在过去一年中,基座大模型技术的快速迭代推动了 AI 搜索的演进,主要体现在以下几个方面:
搜索技术链路重构
基于大模型的全面重构正在重塑 AI 搜索的技术链路。从数据采集、文档解析、向量检索到查询分析、意图识别、排序模型和知识图谱等各个环节,都在经历深刻变革。新的交互方式如对话式搜索、答案总结、智能客服、企业数字员工和虚拟人逐渐成为主流,不仅提升了用户体验,也为更多应用场景提供了可能。
AI 搜索作为基础设施
AI 搜索已成为各类 AI 应用的基础技术之一。作为热门的 AI 原生应用,它不仅驱动了知识类 AI 应用的发展,还逐步成为各大基础模型的内置能力。例如,向量检索、检索增强生成(RAG)和语义搜索等技术已在多个领域广泛应用。这种集成化趋势增强了 AI 搜索在不同场景下的适应性和灵活性。
效果提升面临的瓶颈
尽管 AI 搜索在效果上取得了显著进步,但幻觉问题仍是制约其广泛应用的主要因素,尤其在对知识准确性要求极高的业务场景中更为突出。此外,高成本和隐私安全可控性低也是实施过程中面临的重要挑战。
为应对这些问题,阿里云 Elasticsearch 推出了创新的 AI 搜索方案,使用 RAG 技术对检索增强生成的各个环节进行能力增强,并深度融合了企业版 AI Assistant,将 RAG 技术应用于 AIOps 领域。
Elasticsearch 向量引擎持续优化,特别是针对性能与成本的改进尤为突出。初期,由于普遍存在的认知偏差——认为 ES 向量引擎虽功能强大但在性能上可能存在短板,尤其是对于 Java 生态系统中的应用——这一观点正逐渐被其技术演进所颠覆。自 8.0 初始版本至已经迈入的 8.15 版本的历程中,Elasticsearch 不断迭代,特别是在性能优化方面取得了显著进展,其中包括但不限于对硬件加速技术的有效整合。
AI